Doped Liquid Argon TPCs as a OvBB Platform

Fernanda Psihas

lakeaways

A Neutrino-less double-beta decay discovery would elucidate questions about the neutrino mass mechanism & limits to the half-life are intertwined with the question of the neutrino mass ordering.

A doped LArTPC could have significantly expanded the DUNE physics reach and is compatible with other low energy concepts

This concept introduces many R&D questions, of which comprise a rich research program for the coming decade

SOME REFERENCES

enabling neutrino-less double-beta decay

Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform

A. Mastbaum, ¹ F. Psihas, ² and J. Zennamo²

¹Rutgers University, Piscataway, NJ, 08854, USA

²Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA

(Dated: March 29, 2022)

LArTPC R&D For DUNE & beyond

Snowmass2021 - Letter of Interest

Improving Large LArTPC Performance
Through the Use of Photo-Ionizing Dopants

Topical Group(s):

(NF10) Neutrino detectors (IF08) Noble Elements

Authors: J. Zennamo, A. Mastbaum, F. Psihas

Signal ID and measurement

Signal is 2 electrons with energy = $Q_{\beta\beta}$

The 2v\beta\beta background is irreducible without precise energy measurement

GOALS

To enable $0\nu\beta\beta$ (neutrino-less double-beta decay) searches in LArTPCs Reach sensitivities in the normal ordering region of $m_{\beta\beta}$ phase space To enhance the low energy physics reach of LArTPCs

A. Mastbaum, F. Psihas, J. Zennamo "Xenon-Doped Liquid Argon TPCs as a Neutrinoless Double Beta Decay Platform" arXiv:2203.14700

Dope with ¹³⁶Xe at 2%, which is a 0vββ candidate isotope

Dope with a photosensitive dopant to improve energy resolution

XENON DOPING

What we know:

Xenon doping has been demonstrated at 2%.

Introducing xenon will modify the scintillation profile

Current production of natural Xe is ~60tons per year worldwide. Reliant on expanding Xe extraction and enrichment (currently industry-driven).

Some promising avenues outside HEP:

Metal-organic frameworks have been developed which can efficiently isolate xenon at room temperature

Radioactive waste sites have been found to release large amounts of Xe enriched in ¹³⁶Xe

Both of these are exciting but will require substantial R&D to move to market

BACKGROUND SIMULATION

Backgrounds are simulated using RAT-PAC

We assume a monolithic FD module with nominal materials (not low radioactivity).

Background categories considered:

- 🔀 Argon-42
- Radioactivity from detector
- Rock radioactivity
- Environmental neutrons

Cosmogenically-activated radioisotopes

Two-neutrino double beta decay

Solar neutrinos

BACKGROUND MITIGATION

BACKGROUND MITIGATION

Background	Activity	Events in ROI	Mitigation strategy	
Isotope Intrinsic				
136 Xe, $2\nu\beta\beta$	2% , $T_{1/2} = 2.165 \times 10^{21}$ years [61]	130.28	None	arxiv 2203.10147
Environmental Radiolog	gical Backgrounds			<u> </u>
²³² Th, Rock	3.34 ppm [8, 52]	16 71	Passive Shielding	Department and the entire and 114 to
²³⁸ U, Rock	3.34 ppm [8, 52] 7.11 ppm [8, 52]	340.71	Passive Shielding	Demonstrated the feasibility
²³² Th, Steel	0.1 ppb [50]	117.80	Fiducialization	of reconstructing the MeV-
²³⁸ U, Steel	1 ppb [50]	2.24	Fiducialization	scale signal 214Bi-214Po
⁶⁰ Co, Steel	0.013 mBq/g [50]		Fiducialization	topology in a large-scale
³⁹ Ar, LAr	1 Bq/kg [62]		Energy threshold	wire-readout LArTPC
²²² Rn, LAr	$10 \text{ mBq/m}^3 [8]$	~ ~	Coincident ²¹⁴ Po Tag	Wild readedt E will e
⁴² Ar, LAr	Negligible [63]	Negligible	Use of ⁴² Ar depleted LAr	
$Solar\ Neutrinos$				
8 B ν Elastic Scatters	Standard Solar Model Flux [64]	662.04		
	Standard Solar Model Flux [64]	196.00	Photon Coincidence Tag	
Spallation Products	1 1.			Veto photon coincidence
³² P	$34 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Photon Coincidence Tag	within 32 cm of signal
³⁹ Cl	$150 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing	candidates
⁴¹ Ar	$1600 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Photon Coincidence Tag	Carididates
¹³⁷ Xe	$3.8 \text{ day}^{-1} (10 \text{ kton})^{-1} [65]$		Photon Coincidence Tag	
¹⁶ N	$0.033 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	0 0	Coincident Muon Timing	
³⁰ Al	$1.4 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing	
⁴⁰ Cl	$27 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing	Veto window within
²⁰ F	$2 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing	
³⁴ P	$12 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing	2m and 60sec of all
³⁸ Cl	$110 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	0 0	None	muon tracks.
³⁶ Cl	$110 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	0 0	None	muon tracks.
^{37}Ar	$110 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	0 0	Photon Coincidence Tag	
³³ P	$34 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Photon Coincidence Tag	
¹¹ Be	$0.34 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	Coincident Muon Timing	

BACKGROUND MITIGATION

Background	Activity	Events in ROI	Mitigation strategy				
Isotope Intrinsic							
136 Xe, $2\nu\beta\beta$	2% , $T_{1/2} = 2.165 \times 10^{21}$ years [61]	130.28	None	2νββ			
Environmental Radiological Backgrounds							
²³² Th, Rock	3.34 ppm [8, 52] 7.11 ppm [8, 52]	16 71	Passive Shielding				
²³⁸ U, Rock	7.11 ppm [8, 52]	J40.71	Passive Shielding				
²³² Th, Steel	0.1 ppb [50]	117.80	Fiducialization	Radioactivity			
²³⁸ U, Steel	1 ppb [50]	2.24	Fiducialization				
⁶⁰ Co, Steel	0.013 mBq/g [50]		Fiducialization				
$^{39}\mathrm{Ar,\ LAr}$	1 Bq/kg [62]		Energy threshold				
$^{222}\mathrm{Rn,\ LAr}$	$10 \text{ mBq/m}^3 [8]$	Negligible	Coincident ²¹⁴ Po Tag				
42 Ar, LAr	Negligible [63]	Negligible	Use of ⁴² Ar depleted LAr				
$Solar\ Neutrinos$							
8 B ν Elastic Scatters	Standard Solar Model Flux [64]	662.04		Solar			
8 B ν_{e} Charged Current	Standard Solar Model Flux [64]	196.00	Photon Coincidence Tag	Colai			
Spallation Products							
^{32}P	$34 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	Photon Coincidence Tag				
³⁹ Cl	$150 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing				
⁴¹ Ar	$1600 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Photon Coincidence Tag	Spallation			
137 Xe	$3.8 \text{ day}^{-1} (10 \text{ kton})^{-1} [65]$		Photon Coincidence Tag	•			
^{16}N	$0.033 \mathrm{day^{-1}} (10 \mathrm{kton})^{-1} [59]$	Negligible	Coincident Muon Timing				
30 Al	$1.4 \mathrm{day^{-1}} (10 \mathrm{kton})^{-1} [59]$		Coincident Muon Timing				
40 Cl	$27 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Coincident Muon Timing				
$^{20}\mathrm{F}$	$2 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	Coincident Muon Timing				
^{34}P	$12 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	Coincident Muon Timing				
38 Cl	$110 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	None				
$^{36}\mathrm{Cl}$	$110 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		None				
$^{37}\mathrm{Ar}$	$110 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$		Photon Coincidence Tag				
^{33}P	$34 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	Photon Coincidence Tag				
¹¹ Be	$0.34 \text{ day}^{-1} (10 \text{ kton})^{-1} [59]$	Negligible	Coincident Muon Timing				

BACKGROUNDS HONORABLE MENTIONS

BACKGROUNDS AND ENERGY RESOLUTION

Energy resolution is a crucial component of this concept.

 $E_{res} < 3\%$ is essential to reduce the $2\nu\beta\beta$ background.

CHARGE + LIGHT

Charge + Light = Constant

On DUNE, we'll expect ~50/50 charge to light breakdown.

ENERGY RESOLUTION

Combining charge and light signals is necessary for precise energy resolution.

We need > 20% light collection efficiency, which is beyond the current capabilities FD1 and FD2

We propose **using photosensitive dopants** to utilize the high charge collection efficiency of LArTPCs

R&D Requirements

Finding optimal doping strategy

Understanding timing and triggering in a light-less LAr module

PHOTOSENSITIVE DOPANTS

The most commonly used have ionization energies of 7-9 eV: Tetramethylgermane (**TMG**), (CH₃)₄Ge, Trimethylamine (**TMA**), N(CH₃)₃, Triethylamine (**TEA**), N(CH₂CH₃)₃

Small test stands in the 80s explored a variety of chemicals and found an increase in charge for highly scintillating particles

Using 5.5 MeV a-source found that **TMG** increase

Implies 10,000 photons/MeV for MeV-scale electron signals

EFFECTS OF PHOTOSENSITIVE DOPANTS

Studies with alpha particles show that we can expect up to 60% light collection equivalent

Effects on the existing low-E physics program

- More linear detector response
- Lower thresholds
- Better resolution for highly scintillating particles like alphas and nuclear recoils
- Better resolution of low energy hadronic energy components

Nucl. Instrum. Methods. Phys. Res. B 355, 660 (1995).

ICARUS Collaboration

REQUIREMENTS

Energy resolution is a crucial component of this concept. $E_{res} < 3\%$ is essential to reduce the $2\nu\beta\beta$ background.

Radioactivity assumed for a monolithic detector with nominal materials (not low radioactivity)

Low-radioactivity argon*

*similar to what could enable dark matter searches E. Church et. al., JINST 15 (2020) 09, P09026

Shielding 1m water equiv.+

+similar for what has been proposed for solar neutrinos Capozzi, et. al., Phys.Rev.Lett. 123 (2019)

'REQUIREMENTS"

There is room for adjustment AN idea (others might work)

Hard requirement

Xenon doping at 2%

Monolithic LAr TPC

! Depleted argon

External shielding

<3% energy resolution</p>

Photosensitive dopants

We perform a counting analysis with 2% 136Xe, 10 year exposure, and 1% energy resolution, DUNE-β.

There is room for modifying this base-concept while still attaining sensitivities in the 2-4 meV range.

SUMMARY

This doping concept could extend DUNE's physics program with sensitivities to $0v\beta\beta$ decay as low as $m\beta\beta \sim 2meV$.

This concept employs Xe-doping, photosensitive dopants, depleted argon, and an external shielding compatible with other low energy physics concepts for DUNE phase-II.

The required modifications open a rich R&D program in which will enhance our low energy capabilities in LArTPCs

PHOTOSENSITIVE DOPANTS

The most commonly used have ionization energies of 7-9 eV: Tetramethylgermane (**TMG**), (CH₃)₄Ge, Trimethylamine (**TMA**), N(CH₃)₃, Triethylamine (**TEA**), N(CH₂CH₃)₃

Small test stands explored a variety of chemicals and found an increase in charge for highly scintillating particles

Implies 10,000 photons/MeV for MeV-scale electron signals

Simulated Event in Pure LAr

Courtesy of Ivan Lepetic

EXTERNAL SHIELDING

FIDUCIAL VOLUME

DUNE-B Potential

Original Plot: J. Detwiler, Neutrino2020

